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PROBLEM 1

In this problem, consider the 4× 4 matrix A whose columns are vectors a1, a2, a3, a4 ∈ R4:

A =
[
a1 a2 a3 a4

]
which are mutually orthogonal (ai · aj = 0 for all i 6= j) and have the following lengths:

||a1|| = 1, ||a2|| = 3, ||a3|| = 5, ||a4|| = 7

(1) Compute ATA. (5 points)

Solution: The entries of ATA just compute the pairwise inner products of the columns of
A, which by the information provided in the problem are:

ATA =


1 0 0 0
0 9 0 0
0 0 25 0
0 0 0 49

 = D

(2) Write A as a sum of four rank 1 matrices, and write each of those rank 1 matrices as a
column vector times a row vector (the answer will depend on a1, a2, a3, a4). (10 points)

Solution: Let e1, e2, e3, e4 be the standard basis vectors. With this notation we have:

A =
[
a1 0 0 0

]
+
[

0 a2 0 0
]

+
[

0 0 a3 0
]

+
[

0 0 0 a4

]
=

= a1e
T
1 + a2e

T
2 + a3e

T
3 + a4e

T
4

(3) Compute the explicit formula for the solution v ∈ R4 to the equation Av = b. Your
answer should only depend on a1, a2, a3, a4,b ∈ R4. Hint: remember (1). (10 points)

Solution: Note that ATA is diagonal, so we just need to rescale the rows of AT to compute

the inverse. In other words, if we write D =


1 0 0 0
0 9 0 0
0 0 25 0
0 0 0 49

, then A−1 = D−1AT . Using

this the solution to Av = b is given by:

v = A−1b = D−1ATb =


1 · aT1 b

9−1 · aT2 b
25−1 · aT3 b
49−1 · aT4 b





For the explicit matrix A studied above, consider the matrix:

B = A


1 2 −1 0
0 2 1 −2
0 0 −1 2
0 0 0 3



(4) Write the third column of B in terms of the columns of A. (5 points)

Solution: The third column of B is given by the linear combination −a1+a2−a3, described
by the third column of the upper triangular matrix to the right of A.

(5) Compute the absolute value of the determinant of the matrix B from above. (5 points)

Solution: We first compute the determinant of A. To do this we use the equation ATA = D.
We also know that A and AT have the same determinant. Then we get 1 ∗ 9 ∗ 25 ∗ 49 =
det(D) = det(ATA) = det(A)2, thus we get | det(A)| = 1 ∗ 3 ∗ 5 ∗ 7 = 105. Since the
determinant of an upper triangular matrix is the product of the diagonal entries, we conclude
that the determinant of B is given by:

| det(B)| = |1 ∗ 2 ∗ (−1) ∗ 3 det(A)| = 6 ∗ 105 = 630

(6) Which two columns of B are orthogonal? How do you know? (5 points)

Solution: The first column is a linear combination of a1 and the last column a linear com-
bination of a2, a3 and a4. And since all the columns of A are orthogonal, we get the first
and fourth column of B are orthogonal.

PROBLEM 2

Consider the matrix:

C =

1 0 −1
1 0 −1
1
2
−1

2
1
2



(1) Without doing any computations, what number is detC, and why? (5 points)

Solution: The first two rows of C are the same, thus the matrix does not have full rank
and so det(C) = 0.

(2) Compute the eigenvalues λ1, λ2, λ3 of C. Explain your reasoning. (10 points)



Solution: The characteristic polynomial is:

p(λ) = det

1− λ 0 −1
1 −λ −1
1
2

−1
2

1
2
− λ

 = −λ3+3λ2

2
−λ

2
= −λ

(
λ2 − 3λ

2
+

1

2

)
= −λ(λ−1)

(
λ− 1

2

)
(you can get the formula for the determinant by, say, cofactor expansion along the first row,
and the last equality by the quadratic formula). Thus we conclude that the eigenvalues are
λ1 = 1, λ2 = 0 and λ3 = 1

2
.

(3) Use the general method (i.e. Gauss-Jordan elimination to compute nullspaces) in order
to compute eigenvectors v1, v2, v3 of C corresponding to the eigenvalues λ1, λ2, λ3.

(10 points)
Solution: We compute the eigenvector of λ1 = 1, so we compute the eigenvector by com-
puting the nullspace of C − I, so we get

C − I =

0 0 −1
1 −1 −1
1
2
−1

2
−1

2

 
1 −1 −1

0 0 −1
1
2
−1

2
−1

2

 
1 −1 −1

0 0 −1
0 0 0


Thus the second column is the only free column and so we get the eigenvector is v1 =

1
1
0

.

We compute the eigenvector of λ2 = 0, so we compute the eigenvector by computing the
nullspace of C, so we get

C =

1 0 −1
1 0 −1
1
2
−1

2
1
2

 
1 0 −1

0 0 0
0 −1

2
1

 
1 0 −1

0 −1
2

1
0 0 0


Thus the third column is the only free column and so we get the eigenvector is v2 =

1
2
1

.

We compute the eigenvector of λ3 = 1
2
, so we compute the eigenvector by computing the

nullspace of C − 1
2
I, so we get

C − 1

2
I =

1
2

0 −1
1 −1

2
−1

1
2
−1

2
0

 
1

2
0 −1

0 −1
2

1
0 −1

2
1

 
1

2
0 −1

0 −1
2

1
0 0 0


Thus the third column is the only free column and so we get the eigenvector is v3 =

2
2
1

.

(4) For the given matrix C and its eigenvalues λ1, λ2, λ3 computed in part (2), calculate:

(C − λ1 · I)(C − λ2 · I)(C − λ3 · I)

(5 points)



Solution: We have:

(C − 1 · I)(C)(C − 1

2
· I) =

0 0 −1
1 −1 −1
1
2
−1

2
−1

2

1 0 −1
1 0 −1
1
2
−1

2
1
2

1
2

0 −1
1 −1

2
−1

1
2
−1

2
0

 =

=

−1
2

1
2
−1

2
−1

2
1
2
−1

2
−1

4
1
4
−1

4

1
2

0 −1
1 −1

2
−1

1
2
−1

2
0

 = 0

(5) Use part (4) to get formulas for C3 and C4 in terms of C2 and C only (i.e. your formulas
should be of the form C3 = xC2 + yC for some constants x, y, and similarly for C4).

(5 points)
Solution: By expanding the equality in the previous part, we have:

(1) C3 − 3

2
· C2 +

1

2
· C = 0 ⇒ C3 =

3

2
· C2 − 1

2
· C

This takes care of C3. As for C4, let’s just multiply the formula above by C:

C4 =
3

2
· C3 − 1

2
· C2

However, we need an answer in terms of C2 and C only, so let’s replace C3 by the expression
(1). We obtain:

C4 =
7

4
· C2 − 3

4
· C

(6) Consider any vector of the form v = αv1 + βv2 + γv3, where α, β, γ are real numbers,
and v1, v2, v3 are the eigenvectors of C computed in part (3). Compute:

Cnv

in terms of α, β, γ, n and vectors with explicit numbers as entries.

Then find and prove an explicit formula for:

lim
n→∞

Cnv

in terms of α, β, γ and vectors with explicit numbers as entries. (5 points)

Solution: Because Cvi = λivi for all i ∈ {1, 2, 3}, we have Cnvi = λni vi. Plugging in the
explicit values for the λ’s and the v’s, we have:

Cnv = α

1
1
0

+
γ

2n

2
2
1





Note that the first summand does not change as n → ∞, while the second summand goes
to 0. Thus we get

lim
n→∞

Cnv = α

1
1
0


PROBLEM 3

Let M =

1 −1 3 z
0 −1 y −1
x 2 −1 5

 and consider the equation (with v ∈ R4 and n =

n1

n2

n3

 ∈ R3):

Mv = n

We know that the equation has solutions v ∈ R4 if and only if n1 + n2 + n3 = 0.

(1) Based on the information given in the previous sentence, what is the column space of M
and what are the mystery numbers x, y, z? Explain how you know. (5 points)

Solution: The above description of when the equation Mv = n has a solution is exactly
the description of the column space. Ie the column space is given by vectors n such that the
entries add up to 0. Therefore, all the columns of A must also have the property that their
entries add up to 0. We conclude:

x = −1

y = −2

z = −4

(2) For which values of n is the set {v ∈ R4 such that Mv = n} a subspace of R4, and why?
(5 points)

Solution: Note that 0 is an element of every subspace of R4. Thus if:

0 ∈ {v ∈ R4 such that Mv = n}
we must have n = M0 = 0, so we must have n = 0. In fact for n = 0 the set in question is
indeed a subspace. To check this we need to see that if x, y ∈ {v ∈ R4 such that Mv = n}
and λ ∈ R, then we know Mx = My = 0. Then we have M(x + y) = M(λx) = 0 and thus
x + y, λx ∈ {v ∈ R4 such that Mv = n}. Thus we get this is indeed a subspace exactly
when n = 0.

(3) With the specific values you found for x, y, z, find the complete solution to the equation:

Mv =

 0
1
−1





(solve this part by Gauss-Jordan elimination, identifying free/pivot variables and all that).
(10 points)

Solution: We do this by using Gaussian elimination with the extended matrix to get 1 −1 3 −4 0
0 −1 −2 −1 1
−1 2 −1 5 −1

 
 1 −1 3 −4 0

0 −1 −2 −1 1
0 1 2 1 −1

 
 1 0 5 −3 −1

0 1 2 1 −1
0 0 0 0 0



Thus here we get a particular solution is given by


−1
−1
0
0

 and the solution to Mv = 0 is a

subspace with basis given by


−5
−2
1
0

 and


3
−1
0
1

 (one for each of the two free columns, namely

the third and fourth columns above). Thus the general solution is:

v =


−1
−1
0
0

+ α


−5
−2
1
0

+ β


3
−1
0
1


for any constants α and β.

(4) Let V ⊂ R3 be the orthogonal complement of the column space you computed in part (1).

• V is called the left nullspace of M . (3 points)

• Compute the projection matrix onto V . (7 points)

Solution: The left nullspace and the column space are exactly orthogonal complements to
each other. Since the column space precisely consists of those vectors whose entries sum up
to 0, then its orthogonal complement is precisely the line spanned by the vector:

c =

1
1
1


Thus the projection matrix if given by

PV =
ccT

cT c
=

1

3

1 1 1
1 1 1
1 1 1


(5) If N is any other matrix such that the column space of N is contained inside the nullspace
of M , then what is the product MN equal to? Justify your answer. (5 points)



Solution: By assumption, any column v of N has the property that Mv = 0. Therefore,
we conclude that MN = 0.

PROBLEM 4

(1) Let A =


2 1
2 2
2 2
1 2

. Compute ATA, its eigenvalues and eigenvectors. (10 points)

Solution: We have

ATA =

[
13 12
12 13

]
The eigenvalues and eigenvectors are given by:

λ1 = 1, v1 =
1√
2

[
1
−1

]
and λ = 25, v2 =

1√
2

[
1
1

]
The way to do this is by analogy with parts (2) and (3) of Problem 2; while we expect
you to compute the eigenvalues by solving the characteristic polynomial, in this problem
only we won’t take off points for simply guessing the eigenvectors. The normalization of the
eigenvectors by the factor

√
2 is arbitrary at this point, but it will be important in the next

part.

(2) Compute the SVD of the matrix A from part (1), i.e. write it as:

A = UΣV T

where UTU = I4, V
TV = I2, and the only non-zero entries of Σ are on its diagonal. You

should deduce Σ and V from your work in part (1). Afterwards, this information will give
you two columns of U , but you must compute the other two by Gram-Schmidt. (10 points)

Solution: The singular values are given by the square roots of the eigenvalues of ATA and
so are given by σ1 = 1 and σ2 = 5. The columns of V are given by the above eigenvectors.
Thus

V =
1√
2

[
1 1
−1 1

]
The first two columns of U are given by the following equations ui = Avi

σi
. Thus we get

u1 =
1√
2


1
0
0
−1

 u2 =
1

5
√

2


3
4
4
3


To find the other columns of U we need to extend the above set to an orthonormal set. The
way to do so is to consider an arbitrary basis u1, u2, a, b where a, b ∈ R4 are some simple



vectors (e.g. coordinate unit vectors), and apply the Gram-Schmidt process. This process
will transform a, b into the vectors:

u3 =
1√
2


0
1
−1
0

 u4 =
1

5
√

2


4
−3
−3
4


such that now u1, u2, a, b form an orthonormal basis. Thus we get

A =
1

5
√

2


5 3 0 4
0 4 5 −3
0 4 −5 −3
−5 3 0 4




1 0
0 5
0 0
0 0

 1√
2

[
1 −1
1 1

]

(3) Let S = ATA be the symmetric 2× 2 matrix you computed in part (1), and define:

e(x, y) =
[
x y

]
S

[
x
y

]

• The explicit formula for the quantity above is e(x, y) = 13x2 + 24xy + 13y2 (3 points)

• We have e(x, y) > 0 for all (x, y) 6= (0, 0) because S is positive definite (3 points)

• {e(x, y) = 1} is the equation of the following geometric shape in the x, y plane:

ellipse

(3 points)

(4) Obtain a linear transformation φ : R2 → R2 which transforms the geometric shape
{e(x, y) = 1} into a circle centered at the origin (full points for a correct formula for φ with
explanation of how you got it, half points for a good geometric description of φ in words).

(6 points)

Solution: We have to use a linear transformation that maps both axe of the elipse to the
standard basis. To do this we start with the transpose of matrix of unit eigenvectors V T

and then rescale each eigenvector by the square root of the corrsponding eigenvalue. Thus
we get that the corresponding linear transformation is given by the matrix.

1√
2

[
1 −1
5 5

]

PROBLEM 5



(1) Compute the determinant of the matrix


1 1 1 1 0
1 1 1 0 1
1 1 0 1 1
1 0 1 1 1
0 1 1 1 1

. Show all the steps. (10 pts)

Solution: To do this we will proceed by elimination. Thus we get
1 1 1 1 0
1 1 1 0 1
1 1 0 1 1
1 0 1 1 1
0 1 1 1 1

 


1 1 1 1 0
0 0 0 −1 1
0 0 −1 0 1
0 −1 0 0 1
0 1 1 1 1

 


1 1 1 1 0
0 −1 0 0 1
0 0 −1 0 1
0 0 0 −1 1
0 1 1 1 1

 


1 1 1 1 0
0 −1 0 0 1
0 0 −1 0 1
0 0 0 −1 1
0 0 0 0 4


Here we did one swap of rows, thus we get

det


1 1 1 1 0
1 1 1 0 1
1 1 0 1 1
1 0 1 1 1
0 1 1 1 1

 = − det


1 1 1 1 0
0 −1 0 0 1
0 0 −1 0 1
0 0 0 −1 1
0 0 0 0 4

 = −(1 ∗ (−1) ∗ (−1) ∗ (−1) ∗ 4) = 4

Here we use that the determinant of an upper triangular matrix is given by the product of
the diagonal entries.

(2) Compute det


0 x 0 −1
2 −5 0 0
0 4 −1 0
3 0 −2 1

 as a function of x. Show your steps. (10 points)

Solution: We compute this determinant by using cofactor expansion on the first row:

det


0 x 0 −1
2 −5 0 0
0 4 −1 0
3 0 −2 1

 = −x · det

2 0 0
0 −1 0
3 −2 1

− (−1) · det

2 −5 0
0 4 −1
3 0 −2

 =

= 2x+ (2 ∗ 4 ∗ (−2) + (−5) ∗ (−1) ∗ 3) = 2x− 1

(3) Pick a complex (non-real) number z and write it in both Cartesian (z = a+bi) and polar
(z = reiθ) form. In doing so, give the formula which connects r, θ to a, b. (5 points)

Solution: The formula that goes from r, θ to a, b is:

r =
√
a2 + b2 θ = arccos

(
a√

a2 + b2

)
So you could take, for instance, z = i = 0 + i · 1. Then by the formula above, we have r = 1
and θ = π

2
. Therefore:

z = e
iπ
2



(4) For the z you just chose, compute z + z̄ and zz̄, where z̄ = a− bi is the conjugate of z.
Write down a 2× 2 matrix J with real entries, whose eigenvalues are z and z̄. (5 points)

Solution: For z = i, we have z + z̄ = 0 and zz̄ = 1. For a matrix to have eigenvalues z and
z̄ we thus need the trace to be 0 and the determinant should be 1. Thus we can take

J =

[
0 1
−1 0

]
As this matrix has indeed the correct trace and determinant and thus it has the correct
characteristic polynomial and so the correct eigenvalues.

(5) Consider the solution to the system of differential equations:[
ḟ(t)
ġ(t)

]
= J

[
f(t)
g(t)

]
where J is the matrix you chose in part (4). Any solution to this equation is of the form:

f(t) = c1 · ......................... + c2 · .........................

where c1 and c2 are some scalars. Fill the blanks with two explicit functions of t, which you
should get from what you already know about the matrix J (no further computations are
necessary, but you should say explicitly what these functions have to do with J). (5 points)

Solution: We know the general solution is given by:[
f(t)
g(t)

]
= eJta

for some constant vector a. To take the exponential, we need to diagonalize J :

J = V

[
i 0
0 −i

]
V −1 ⇒ eJt = V

[
eit 0
0 e−it

]
V −1

for some matrix V whose entries are numbers. Therefore, the solution to the differential
equation is: [

f(t)
g(t)

]
= V

[
eit 0
0 e−it

]
V −1a

Since the entries of V and a are numbers (which do not depend on t), we conclude that:

(2) f(t) = c1 · eit + c2 · e−it

for various numbers c1 and c2.

(6) Explain (in words) the qualitative behavior of f(t) from part (5) as t→∞. (5 points)

Solution: Since e±it = cos(t) + i sin(t), as t → ∞ the function (2) oscillates just like the
functions sine and cosine. Note that if you would have chosen z = a + ib for some general
real numbers a and b, then the function f(t) would have:



• tended to ∞ as t→∞ if a > 0

• tended to 0 as t→∞ if a < 0

PROBLEM 6

At times 1, 2, 3, 4, you measure temperatures 2
3
, 1, 1, 7

3
, respectively. These are represented

as data points on the following plot (horizontal axis is time, vertical axis is temperature):

1 2 3 4

0.5

1.0

1.5

2.0

The goal is to find numbers a, b such that the line y = ax + b is the best fit for the data
points above. Specifically, this means that a and b should be chosen such that the quantity:

Υ =

(
a · 1 + b− 2

3

)2

+ (a · 2 + b− 1)2 + (a · 3 + b− 1)2 +

(
a · 4 + b− 7

3

)2

is minimal

(1) Define a 4× 2 matrix A, a 2× 1 vector v, and a 4× 1 vector b such that:

Υ = ||Av − b||2

(the entries of A and b should be numbers, and those of v should be unknowns). (5 points)

Solution: Let

A =


1 1
2 1
3 1
4 1

 , v =

[
a
b

]
, b =


2
3
1
1
7
3


With this matrix and vectors, we indeed get Υ = ||Av − b||2.

(2) Write down the general formula for the solution to the least squares problem: if the
columns of the matrix A are independent, then the quantity ||Av − b|| is minimal for:

v = (ATA)−1ATb



(the answer should be a formula in terms of A and b; don’t plug in numbers yet). (5 points)

(3) Use the previous two parts to solve for the numbers a and b that give the best line fit
for our four data points (i.e. that minimize the quantity Υ). Show your work. (10 points)

Solution: From the formula we get

v = (ATA)−1ATb =

[
30 10
10 4

]−1 [
15
5

]
=

1

20

[
4 −10
−10 30

] [
15
5

]
=

1

2

[
1
0

]
Hence we conclude that the best fit line is y = x

2
.

(4) With the values you just found for a and b, draw the precise line y = ax+ b in the graph:

1 2 3 4

0.5

1.0

1.5

2.0

(5 points)

Let’s look at the aforementioned data points from the point of view of statistics. Put the
sample sets for time and temperature in a 4× 2 matrix:

Z =
[
x y

]
where x =


1
2
3
4

 and y =


2
3
1
1
7
3


The covariance matrix of the sample sets x =“time” and y =“temperature” is given by:

K =

[
Kxx Kxy

Kyx Kyy

]
=

ZTPZ

4− 1
, where P =

1

4
·


3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3


A computer tells us that this matrix takes the form (up to two decimals approximation):

K =

[
−0.53 1.87

1 1

]
︸ ︷︷ ︸

orthogonal

[
0.1 0
0 2.11

] [
−0.53 1
1.87 1

]



(5) Using all the information above, for any constants α and β, write the variance of the

linear combination αx + βy in terms of the matrix K and the vector

[
α
β

]
(5 points)

Solution: The variance of αx + βy is:

Kαx+βy,αx+βy = α2Kxx + αβKxy + βαKyx + β2Kyy =
[
α β

]
K

[
α
β

]

(6) Using all the information above, find particular constants α and β such that the linear
combination αx + βy has variance precisely 0.1 (and explain how you know) (5 points)

Solution: We are told that:

K = Q

[
0.1 0
0 2.11

]
QT

for some explicit matrices, where Q is orthogonal. Therefore, we conclude that:

Kαx+βy,αx+βy = cTQ

[
0.1 0
0 2.11

]
QTc

where c =

[
α
β

]
. If you want the quantity above to be 0.1, you may choose c such that:

QTc =

[
1
0

]
⇒ c = Q

[
1
0

]
=

[
−0.53

1

]


